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Abstract 

Conduct disorder (CD), a psychiatric diagnosis describing aggressive and delinquent behavior 

among children and adolescents, is influenced and maintained by distinct social, psychological, 

and biological risk factors. However, no studies have assessed the extent to which 

biopsychosocial factors collectively influence and predict CD onset and severity. The present 

study tests the biopsychosocial etiological model and identifies the most influential risk factors 

for its onset by training machine learning classifiers that predict CD status among 4667 youth 

from the Adolescent Brain Cognitive Development Study. We constructed four feed-forward 

neural nets to classify a subject as meeting or not meeting the diagnostic criteria for CD based on 

their exposure to (a) social risk factors, (b) biological risk factors, (c) psychological risk factors, 

and (d) factors across all three risk domains. The classifier trained across risk domains yielded 

the highest accuracy of 80.8% and outperformed the classifiers trained within individual 

domains. Furthermore, comorbid symptoms of attention-deficit/hyperactive disorder (ADHD) 

and oppositional defiant disorder (ODD), the experience of physical harm and criticism within 

the family, and reduced cortical-subcortical connectivity were the strongest predictors of CD in 

this study. Together, these findings reinforce the efficacy of the biopsychosocial model and 

suggest that researchers must investigate the mental health, family environment, and neural 

topography of at-risk youth to adequately characterize CD. 

 

Keywords: conduct disorder; biopsychosocial; comorbidity; neighborhood; family; neural 

topology; graph analysis; machine learning; neural net; classifier 
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Conduct disorder (CD) is a psychiatric diagnosis that describes severe antisocial, 

aggressive, and deceitful behavior among children and adolescents (American Psychiatric 

Association, 2013). Youth with CD display widespread social and neurocognitive deficits, such 

as adverse family relationships, academic underachievement, impaired executive functioning, 

and emotion dysregulation (Cappadocia et al., 2009; Frick, 2006; Frick & Dickens, 2006; 

Moffitt, 1993; Ogilvie et al., 2011). CD presents a high risk for developing other mental health 

conditions, including substance abuse, major depression, and antisocial personality disorder 

(Colman et al., 2009). The violent and disruptive behaviors that characterize the disorder pose 

serious physical and emotional harm to the parents, teachers, and peers surrounding the youth 

(Frick & Dickens, 2006; Lytton, 1990). Furthermore, CD burdens the criminal justice system, 

with approximately 40% of youth who offend meeting for its diagnosis (Dadds et al., 2005; 

Vermeiren, 2003). Given the severe impact of CD on youth and society, it is essential that 

researchers investigate the individual and environmental factors underlying its development.  

Brief Review of Social, Psychological and Biological Factors Related to CD 

Decades of research highlight that social, psychological, and biological risk factors 

influence the onset and maintenance of CD. Social factors, including living in poverty, exposure 

to neighborhood violence, inconsistent and harsh discipline from caregivers, and interactions 

with antisocial peers, predict the disorder (Frick et al., 1992; Loeber et al., 2000; Murray & 

Farrington, 2010). Psychological factors, such as impulsivity, substance misuse, difficult 

temperament, neuropsychological deficits, and psychiatric comorbidity with attention-

deficit/hyperactive disorder (ADHD) and oppositional defiant disorder (ODD), are strongly 

associated with CD diagnosis (Azeredo et al., 2018; Biederman et al., 1991; Dodge et al., 1990). 

Finally, biological factors relating to neural abnormalities reliably characterize the disorder 
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(Baker et al., 2015; Blair et al., 2014; Moffitt, 1993). Youth with CD show several structural and 

functional differences in the amygdala, hippocampus, caudate, orbital frontal cortex, anterior 

cingulate cortex, superior temporal gyrus, prefrontal cortex, insula, and fusiform gyrus (Baker et 

al., 2015; Blair, 2013; Fairchild et al., 2019). Additionally, affected youth display atypical neural 

communication between various neural structures (e.g., reduced connectivity in emotional 

cortical-subcortical networks, low-level perceptual networks, and high-order cognitive networks 

and heightened connectivity in the frontoparietal network; Aghajani et al., 2016; Cohn et al., 

2015; Finger et al., 2011; Lu et al., 2015; Zhou et al., 2016). Recent advances in graph theory, a 

higher-level connectivity analysis that examines the organization of neural networks and the 

brain as a whole, highlights that CD is related to functional deficits in communication efficiency 

and information segregation and structural deficits in node distribution (Jiang et al., 2016; Lu et 

al., 2017). More specifically, Tillem et al. (2021) identified greater global clustering of nodes 

and fewer cortical-subcortical connections among CD subjects. These widespread neural 

abnormalities alongside the familial, interpersonal, and cognitive difficulties experienced by 

affected youth highlight the importance of assessing a biopsychosocial model for CD 

development (Borsboom, 2017; Borsboom & Cramer 2013; Frick & Dickens, 2006; Molenaar & 

Campbell, 2009). 

Unfortunately, the research on CD often examines the effects of only a few factors at a 

time (Bolón-Canedo et al., 2015; Dwyer et al., 2018; Ioannidis, 2016). To date, no studies have 

assessed the collective influence of biological, psychological, and social risk factors on CD. As a 

result, existing research may not account for the heterogeneous systems and interacting factors 

that influence CD onset and expression (Borsboom, 2017; Borsboom & Cramer 2013; Ioannidis, 

2016; Molenaar & Campbell, 2009). Furthermore, the development of predictive models for CD 
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is extremely limited (De Brito et al., 2009; Yarkoni & Westfall, 2017). As a result, the extent to 

which characteristics and conditions such as neighborhood disadvantage, negative parenting 

styles, and disrupted neural connectivity reliably predict CD status or identify high-risk subjects 

is largely unexplored (Molenaar & Campbell, 2009; Yarkoni & Westfall, 2017).  

Machine Learning as a Method to Test the Biopsychosocial Model of CD 

Substantial research has systematically identified factors important for understanding CD. 

However, a paucity of empirical work has examined how these factors collectively influence the 

disorder. Machine learning is a novel technique that can assess high-dimensional relationships 

between risk factors and CD. This method enables models to automatically improve through 

experience, recognize complex trends, and conduct evidence-based decision-making (Jordan & 

Michell, 2015). Machine learning algorithms generate abstract, lower-level representations of 

data by conducting non-linear transformations that selectively turn off noise and preserve 

meaningful signals (LeCun et al., 2015; Shafiei et al., 2020; Zhang, 2018a). As a result, this 

technique is especially suited for analyzing linear and non-linear relationships between 

predictors and outcomes, identifying salient predictors, and suppressing non-relevant predictors 

(Belloni et al., 2014; Svozil et al., 1997). An additional advantage of machine learning is that the 

approach does not require assumptions regarding the distribution of the data or interactions 

between variables (Arnold et al., 2020; Jha et al., 2017).  

 Classifiers are specific types of machine learning models that extract trends and generate 

individual predictions from high-dimensional data (Shafiei et al., 2020). These models can assess 

whether group-level differences—regardless of effect size or statistical significance—translate 

into reliable individual differences (Pauli et al., 2020). Classifiers also can learn key features, 

such as unique neural signatures or combinations of risk factors, that identify subjects at high 
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risk for certain disorders (Koutsouleris et al., 2009). In the future, these models may act as 

decision aids for unclear diagnostic circumstances (Davatzikos et al., 2008; Dwyer et al., 2018; 

Redlich et al., 2014). Thus, machine learning assistance for clinical psychology has the potential 

to improve the prevention, diagnosis, and treatment of mental health conditions like CD.  

 A common criticism of machine learning methods is that they are “black box” algorithms 

that predict outcomes without interpreting the features most relevant to their analyses (Belloni et 

al., 2014). However, developers recently have built algorithms that ameliorate this shortcoming 

by determining the relative importance of individual predictors when classifying out-of-sample 

outcomes (Olden & Jackson, 2002; Shafiei et al., 2020). Furthermore, experimenters can 

compare a classifier’s predictive performance when different sets of features are included to 

determine relative significance across risk factor domains (Yarkoni & Westfall, 2017). In the 

clinical context, these new interpretable qualities allow researchers to assess the collective and 

individual influence of biopsychosocial risk factors on psychological outcomes. 

Recent applications of machine learning to clinical psychology predict psychiatric 

diagnoses using high-dimensional neuroimaging data (Arbabshirani et al. 2017; Dwyer et al., 

2018). Primarily focused on separating individuals with Alzheimer’s disease, depression, 

schizophrenia, and ADHD from healthy controls, these analyses achieve greater than 75% 

accuracy in their classifications and demonstrate machine learning’s promising contributions to 

psychology (Arbabshirani et al. 2017; Davatzikos et al., 2008; Fu et al., 2008; Kambeitz et al., 

2015; Kambeitz et al., 2017; Kim et al., 2016; Kuang & He, 2014; Schnack & Kahn, 2016). 

However, to date, only six published studies have applied machine learning to CD classification. 

Researchers have predicted CD diagnoses using gray matter volume data with 76% to 85% 

accuracy (Zhang et al., 2018b; Zhang et al., 2019; Zhang et al., 2020a). Tor et al. (2021) 
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developed classifiers from resting-state electroencephalogram signals that differentiated subjects 

with ADHD, CD, and comorbid ADHD + CD, while Zhang et al. (2020b) trained a support-

vector machine from resting-state graph metrics that correctly identified CD groups 94.44% of 

the time. Finally, Pauli et al. (2020) separated subjects with CD from healthy controls based on 

negative and positive parenting characteristics, demonstrating 69% to 75% accuracy. These 

studies suggest that abnormal brain structure, disrupted neural activity, and harsh parenting 

strategies independently predict CD among youth. 

However, this prediction-based research is limited to individual domains of risk factors. 

No researchers have developed classifiers for CD built on all three biological, psychological, and 

social domains nor compared the predictive power of classifiers built on subsets of these 

domains. Furthermore, many of these studies lack meaningful analyses of the individual risk 

factors most relevant in classification tasks. The purpose of the present study is to address these 

gaps in the literature by training four machine learning models to classify CD diagnoses based on 

neighborhood and family measures, brain topology, comorbid psychopathology, and the 

combination of these features. Furthermore, we intend to determine the relative importance of 

each feature during prediction and identify the “riskiest” factors across all four models. 

The Present Study 

We trained four feed-forward neural nets1 (FNN) to predict if a subject meets the criteria 

for CD based on (a) neighborhood and family measures, (b) global and local connectivity graph 

metrics, (c) comorbid ADHD and ODD symptomatology, and (d) the combination of all three 

risk factor domains. We included graph metrics to account for widespread connectivity 

 
1 Despite their name, neural nets are not exclusive to neuroscientific variables. The algorithm adopts this title 
because its nodes or units of information processing are loosely modeled on the neurons in a biological brain. Neural 
nets can process both neural and non-neural data. 
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anomalies and build upon previous findings, which suggest that differences in global and local 

organization partially account for CD-specific deficits in neurocognitive functioning and 

emotional processing (Tillem et al., 2021). All data was collected from the Adolescent Brain 

Cognitive Development Study (ABCD Study), a longitudinal multi-site experiment following the 

brain development and health of over 10,000 eight to 11-year-olds (Casey et al., 2018). For each 

model, we calculated the accuracy of CD classification for unseen subjects and determined the 

relative importance of individual risk factors. These analyses test the biopsychosocial model for 

CD by comparing the accuracy rates of classifiers built within or across risk factor domains. 

Furthermore, insight into the classifiers’ most predictive factors may shed light on causal 

theories of development and improve our ability to identify children at greatest risk for CD.  

Methods 

Participants 

The ABCD Study is designed to include a diverse population that reflects the 

demographics of the United States (Garavan et al., 2018). Participants consisted of children 

between eight and 11 who completed the baseline session of the ABCD Study. Researchers 

gathered signed informed consent from parents and written assent from children prior to the 

study (Garavan et al., 2018). Given the large number of families with multiple children 

participating in the ABCD Study, siblings were overrepresented in the sample (Iacono et al., 

2018). To control for any family-related effects, one child from each family was randomly 

selected for the current analysis (see Table 1 for a summary of demographics).  
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Table 1. Demographics Summary 

            Correlations 

Variable n Mean Std. Dev. Min Max 1 2a 3b 4 

1.  Age 4667 9.51 .51 8.00 11.00 ― .01 -.03* -.05* 

2.  Sexa 4667           ― -.02 .08* 

Male 2302                 

Female 2365                 

3.  Raceb 4667             ― .08* 

White 2483                 

Black 687                 

Hispanic 977                 

Asian 98                 

Other 470                 

4.  CD 
Symptomatology 

4667 .29 .79 .00 10.00       ― 

CD Diagnosis 204                 

No CD Diagnosis 4463                 

* Significant at alpha = .05 under the Spearman correlation test. 

a Spearman correlations were used to examine the effect of Sex (dichotomously-coded). 

b Spearman correlations were used to examine the effect of Race (dichotomously-coded, white vs. non-white). 
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Measures 

CD Diagnosis 

ABCD Study researchers administer the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) to measure 

CD symptomatology and diagnosis according to the Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition’s (DSM-5) criteria (Kaufman et al., 2013). Consistent with the 

prevalence rate of approximately 4.4% for young adolescents in the United States, 4.37% (n = 

204) of the sample was diagnosed with CD (Merikangas et al., 2010).  

Neighborhood and Family 

The ABCD Study’s Parental Monitoring Survey (PMQ) gathers youth-reported measures 

of parental monitoring and supervision, and the Family Environment Scale-Family Conflict 

Subscale (FES) obtains parent-reported measures of family dynamics, cohesion, expressiveness, 

and conflict (see Table 2 for descriptions of all environmental measures). Additionally, the 

severity of neighborhood crime is assessed with the ABCD Study’s Neighborhood Safety/Crime 

Survey (NSC) administered to subjects’ parents.  

Table 2. Descriptions of Environmental Measures 

Metric Definition 

Neighborhood Crime 1-5 interval response to “My neighborhood is safe from 
crime.” (1 indicates “Strongly disagree”; 5 indicates 
“Strongly agree”) 

Family Fighting 0/1 binary response to “We fight a lot in our family/Peleamos 
mucho en nuestra familia.” (0 indicates “No”; 1 indicates 
“Yes”) 
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Family Anger 0/1 binary response to “Family members rarely become 
openly angry/Los miembros de la familia raramente se enojan 
abiertamente.” (0 indicates “No”; 1 indicates “Yes”) 

Family Throwing Objects 0/1 binary response to “Family members sometimes get so 
angry they throw things/Los miembros de la familia algunas 
veces se enojan tanto que avientan cosas.” (0 indicates “No”; 
1 indicates “Yes”) 

Family Temper 0/1 binary response to “Family members hardly ever lose 
their tempers/Los miembros de la familia dificilmente pierden 
su temperamento.” (0 indicates “No”; 1 indicates “Yes”) 

Family Criticism 0/1 binary response to “Family members often criticize each 
other/Los miembros de la familia con frecuencia se critican 
unos a otros.” (0 indicates “No”; 1 indicates “Yes”) 

Family Hitting 0/1 binary response to “Family members sometimes hit each 
other/Los miembros de la familia algunas veces se golpean 
unos a otros.” (0 indicates “No”; 1 indicates “Yes”) 

Family Disagreement 0/1 binary response to “If there is a disagreement in our 
family, we try hard to smooth things over and keep the 
peace/Si hay un desacuerdo en nuestra familia, hacemos todo 
lo posible por resolverlo y conservar la paz.” (0 indicates 
“No”; 1 indicates “Yes”) 

Family Competition 0/1 binary response to “Family members often try to one-up 
or outdo each other/Los miembros de la familia con 
frecuencia tratan de superar a los demás.” (0 indicates “No”; 1 
indicates “Yes”) 

Family Raising Voices 0/1 binary response to “In our family, we believe you don't 
ever get anywhere by raising your voice/En nuestra familia, 
creemos que no se llega a nada levantando la voz.” (0 
indicates “No”; 1 indicates “Yes”) 

Spanish-Speaking 0/1 binary response to “¿Español? (1, Sí).” (0 indicates “No”; 
1 indicates “Yes”) 
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Monitoring Youth Location 1-5 interval response to “How often do your 
parents/guardians know where you are?” (1 indicates 
“Never”; 5 indicates “Always”) 

Monitoring Youth 
Interactions 

1-5 interval response to “How often do your parents know 
who you are with when you are not at school and away from 
home?” (1 indicates “Never”; 5 indicates “Always”) 

Youth/Parent 
Communication 

1-5 interval response to “If you are at home when your 
parents or guardians are not, how often do you know how to 
get in touch with them?” (1 indicates “Never”; 5 indicates 
“Always”) 

Monitoring Youth Plans 1-5 interval response to “How often do you talk to your 
mom/dad or guardian about your plans for the coming day, 
such as your plans about what will happen at school or what 
you are going to do with friends?”  (1 indicates “Never”; 5 
indicates “Always”) 

Dinner Frequency 
  

1-5 interval response to “In an average week, how many times 
do you and your parents/guardians eat dinner together?” (1 
indicates “Never”; 5 indicates “Always”) 

 
ADHD and ODD Symptomatology 

ADHD and ODD symptomatology is measured by the DSM-5 ADHD and ODD criteria 

of the K-SADS-PL. ADHD is a mental health disorder defined by highly hyperactive and 

impulsive behaviors, while ODD is a childhood disorder characterized by a persistent pattern of 

hostility and defiance against authority figures (Biederman et al., 1991; Loeber et al., 2000).  

Graph Metrics  

The ABCD Study acquires 15-20 minutes of resting-state fMRI data from each 

participant. Subjects are instructed to remain still and gaze at a central fixation cross during data 

collection. Imaging parameters are uniform across all 21 data collection sites and scanner models 

(Casey et al., 2018; Hagler et al., 2019). 
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Graph metrics of resting-state fMRI connectivity were calculated by Tillem et al. (2021) 

through unweighted, undirected graph analysis. Tillem et al. (2021) constructed a 14x14 

connectivity matrix from (a) cortical-cortical connectivity data between the major resting-state 

networks (default, dorsal attention, frontoparietal, salience, ventral attention, cingulo-opercular, 

cingulo-parietal, visual, auditory, retrosplenial-temporal, sensorimotor-hand, sensorimotor-

mouth, and “other” networks) provided by Hagler et al. (2019) and (b) cortical-subcortical 

connectivity data across the subcortical structures provided by Tillem et al. (2019). Tillem et al. 

(2021) converted these matrices into graphs with 14 nodes, representing 13 cortical networks and 

one subcortical node. From these graphs, they extracted global metrics that describe topology 

across the brain and local metrics that measure node-level organization (see Table 3 for a 

description of the graph metrics).  

Graph metrics such as efficiency and path length measure the integration of information 

in the brain (Rubinov & Sporns, 2010; Stam & Reijneveld, 2007). Additionally, clustering 

coefficients quantify neural segregation or local specialization for certain tasks, while degree and 

betweenness centrality identify crucial, highly connected areas within different brain networks 

(Fallani et al., 2014). 

Table 3. Descriptions of Graph Metrics (adapted from Tillem et al., 2021) 

Metric Definition 

Maximum Degree The number of connections between the largest hub (the node 
with the largest number of connections) and other nodes in 
the brain. High maximum degree indicates effective 
integration of information between nodes. 

Mean Eccentricity The longest path length from one node to any other node in 
the network. 
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Maximum Betweenness 
Centrality (BC) 

The number of shortest paths passing through a specific 
node. Graphs with high maximum BC have more information 
traveling through a single, centrally located hub, allowing for 
efficient communication and effective information 
integration. 

Diameter 
  

The longest possible path in a network. High diameter 
indicates a spread-out network. 

Average Shortest Path The average shortest path length across all pairs of nodes. 
Low average shortest path indicates greater efficiency. 

Global Clustering The fraction of nodes that form triangular connections (i.e., 
the fraction of nodes whose neighbors are also interconnected 
with each other) at the network level. High global clustering 
indicates greater functional segregation, efficient local 
connectivity, and robustness to disruption. 

Local (Mean) Clustering The fraction of nodes that form triangular connections (i.e., 
the fraction of nodes whose neighbors are also interconnected 
with each other) at the node level, then averaged across all 
nodes in the network. High local clustering indicates greater 
functional segregation, efficient local connectivity, and 
robustness to disruption. 

Global Efficiency A metric related to the average inverse shortest path length 
across an entire graph. Graphs with high global efficiency 
allow information to travel through fewer connections to get 
from a node to any other node in the network, increasing the 
efficiency of neural communication. 

Local (Mean) Efficiency A metric related to the inverse shortest path length of a 
specific node within a smaller neighborhood. Nodes with 
high mean efficiency allow information to travel through 
fewer connections to get to other nodes in that neighborhood, 
increasing the efficiency of neural communication. 
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Subcortical Degree The number of connections between subcortical structures 
and cortical networks. Nodes with high subcortical degree 
have greater connections and may act as more of a hub in the 
global flow of information. 

Subcortical Betweenness 
Centrality (BC) 

The number of shortest paths passing through a subcortical 
node in the global flow of information. Nodes with high 
subcortical BC have more information passing through them 
(i.e., are more central). 

Subcortical Local Clustering The number of triangular connections associated with 
subcortical structures. High subcortical local clustering 
indicates greater functional segregation, efficient local 
connectivity, and robustness to disruption in subcortical 
structures. 

Subcortical Local Efficiency The efficiency of communication between subcortical 
structures and other nodes in their immediate neighborhood. 

 
Procedure 
 
 The classification of subjects as meeting or not meeting the criteria for CD requires that 

machine learning models identify highly non-linear patterns and develop meaningful decision 

rules. To illustrate the complexity of this task, we plotted a 36-dimensional representation of our 

sample for the 36 biopsychosocial risk factors used in later analysis and colored each subject by 

their CD diagnosis. Because it is impossible to visualize statistical relationships in higher than 

three dimensions, we reduced the data from 36 to two and three dimensions using the T-

Distributed Stochastic Neighbor Embedding (tSNE) algorithm. tSNE is a non-linear 

dimensionality reduction technique that preserves the shape of high-dimensional data in lower 

dimensions for visualization purposes (Donaldson, 2016). The extensive overlap and lack of 
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clear separation between subjects with CD and healthy controls point to the classification task’s 

immense difficulty (see Figure 1).  
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Figure 1. Visualization of the Classification Task 

 

Note. Rows A and B visualize the classification task in two and three dimensions respectively. In reality, FNN 
classification occurs at the 36-dimensional level.  
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Using the nnet package in the programming language R, we built four FNNs to learn 

patterns within this high-dimensional data and classify the presence or absence of CD (Ripley & 

Venables, 2021). FNNs are machine learning models that develop decision rules and identify key 

features from labeled training data to classify unlabeled testing data (Zhang et al., 2018a). When 

designing FNNs, researchers must specify the network’s architecture, activation function, and 

training algorithm (Jha et al., 2017). 

Architecture 

FNN architecture is defined by the number of layers within the network and the number 

of neurons or nodes within each layer. Information moves forward from the input neurons, 

through the hidden neurons, and to the output neurons. At each layer, the model learns complex 

patterns and relationships by conducting linear and non-linear transformations on the data. 

For all four classifiers, we included participants from the initial sample of 4667 subjects 

if data on their (a) CD diagnosis, (b) age, sex, race, and research collection site, and (c) model-

specific measures were available.  

Model 1 

To assess the predictive ability of neighborhood and family risk factors, model 1 was 

trained on NSC, FES, and PMQ responses. Demographic information on the research collection 

site, sex (dichotomously coded, male vs. female), race (dichotomously coded, white vs. non-

white), and age were included to control for between-subject variability. Subjects with missing 

entries for NSC, FES, or PMQ were excluded from the original sample of 4667, resulting in a 

final sample of 4387 for model 1 training and testing. 
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The architecture of model 1 consists of 20 input neurons to represent 20 social risk 

factors (see Figure 2). As standard with binary classification problems, one output neuron 

calculated the probability that a subject meets the criteria for CD based on their input features.  

The number of hidden neurons chosen by the researcher influences the fit and 

generalizability of the model. An insufficient number of hidden neurons may prevent the model 

from learning detailed patterns and representations, thus lowering accuracy. Conversely, an 

excessive number of hidden neurons may encourage overfitting to the training set and decrease 

test performance (Vujičić et al., 2016). The standard approach to address this issue is to select 

fewer hidden neurons than input neurons but more hidden neurons than output neurons (Huang 

& Babri, 1998; Sheela & Deepa, 2013; Vujičić et al., 2016). To determine this number, we ran 

simulations of possible architectures abiding by this rule and selected a FNN with six hidden 

neurons for model 1 because it optimized test accuracy.  
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Figure 2. Network Architecture for Model 1 

 
Note. Model 1 consists of 20 input neurons, six hidden neurons, and one output neuron. Line thickness is 
proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and grey lines 
indicate negative parameters. 
 

Model 2 

To assess the predictive ability of resting-state brain topography, model 2 was trained on 

global and local graph metrics. Like with model 1, demographic controls were included (see 

Figure 3). The model was trained on all 4667 subjects. Using the same methodology as above, 

we determined the optimal architecture of model 2 to contain 17 input neurons, six hidden 

neurons, and one output neuron. 
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Figure 3. Network Architecture for Model 2 

 
Note. Model 2 consists of 17 input neurons, six hidden neurons, and one output neuron. Line thickness is 
proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and grey lines 
indicate negative parameters. 
 

Model 3 

To assess the predictive ability of comorbid psychopathology, model 3 classifies CD 

status based on ADHD and ODD symptomatology measured by the K-SADS-PL. Demographic 

features were also included for model training (see Figure 4). We removed subjects with missing 

values, yielding a sample of 4400. After running multiple simulations to determine the optimal 

architecture, we specified six input neurons, three hidden neurons, and one output neuron for 

model 3.  
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Figure 4. Network Architecture of Model 3 

 
Note. Model 3 consists of six input neurons, three hidden neurons, and one output neuron. Line thickness is 
proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and grey lines 
indicate negative parameters. 
 

Model 4 

Finally, to test the collective influence of these biopsychosocial risk factors, model 4 

predicts CD diagnosis based on neighborhood and family measures, global and local brain 

topography, psychiatric comorbidities, and demographic features combined (see Figure 5). We 

removed subjects with missing values, yielding a sample of 4387. This model consists of 36 

input neurons, 10 hidden neurons, and one output neuron. 
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Figure 5. Network Architecture for Model 4 

 
Note. Model 4 consists of 36 input neurons, 10 hidden neurons, and one output neuron. Line thickness is 
proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and grey lines 
indicate negative parameters. 
 
Balancing Datasets 

Classifiers encounter issues with model fitting when datasets are unbalanced (i.e., contain 

one group that is disproportionately smaller than the other). If left uncorrected, the model may 

ignore or discount the minority group during classification (Chawla et al., 2002; Qiao & Liu, 

2009). Approximately 4.4% to 4.6% of subjects in our four model samples were diagnosed with 

CD. Thus, because typically developing subjects vastly outnumbered subjects with CD, the four 

datasets in the present study were unbalanced. 

A standard approach to address unbalance is to undersample the larger class and 

oversample the smaller class until they are equal in size (Chawla et al., 2002). The ROSE 

package in R achieves oversampling through a smoothed bootstrapping method that draws 
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artificial samples from the feature space around the minority class. This algorithm preserves the 

distribution of data within each class and is preferred over oversampling processes that merely 

duplicate observations (Menardi & Torelli, 2014). In addition to oversampling the minority class, 

ROSE randomly undersamples the majority class without replacement (Lunardon et al., 2015). 

We used this method to oversample subjects with CD and undersample typically developing 

subjects until each dataset was balanced. 

Gaussian Noise and Regularization 

Overfitting occurs when models are closely trained to a limited set of data points and fail 

to flexibly adjust to new patterns or behaviors in unseen populations (Whelan & Garavan, 2014; 

Yarkoni & Westfall, 2017). For each classifier, 67% of the dataset was randomly selected for 

model training and 33% for model testing. We adopted the standard approach of adding 

Gaussian noise to the training set to prevent the model from memorizing patterns or trends in the 

data (Bishop, 1995). In addition, all models included a regularization decay term that penalized 

weight and bias parameters for overfitting to the training set (Ying, 2019). 

Training 

Each classifier was trained to predict whether an individual subject meets the diagnostic 

criteria for CD based on their exposure to risk factors. All predictors were standardized before 

training to improve model fitting. Risk factor inputs were then transformed by a series of weight 

and bias terms and summed to calculate hidden layer neurons. These sums then passed through a 

non-linear activation function that activated neurons above a certain threshold and deactivated 

neurons below that threshold. 

The neurons of the hidden layer were calculated as follows (Jha et al., 2017): 

𝑦! 	= 	 𝑓"(∑ 𝑤#(𝑖, 𝑗)𝑥$ + 𝑏#)
%!
$&#  for 𝑗 = 1,2, . . . , 𝑁", 



THE CLASSIFICATION OF CONDUCT DISORDER 25 

 

 

where 𝑥$ is the ith input neuron value, 𝑦! is the jth hidden neuron value, 𝑁' is the number of 

input neurons, 𝑁" is the number of hidden neurons, 𝑓" is the hidden layer activation function, 

and 𝑤# and 𝑏# are the weight matrix and the bias vector connecting the input layer to the hidden 

layer.  

We adopted the standard approach for binary classification models of defining 𝑓" as the 

sigmoid activation function (Jurafsky & Martin, 2020). This activation function transforms 

inputs into values between 0 and 1 to amplify meaningful signals and suppress noise. The 

calculation of the sigmoid function 𝑓" is displayed below (Jha et al., 2017): 

𝑓"(𝑥) 	= 	
1

1 + 𝑒()*)
 

The classifiers then conducted linear and non-linear transformations on the hidden 

neurons 𝑦! to calculate values in the output layer. Output nodes were calculated as follows (Jha 

et al., 2017): 

𝑂, 	= 	 𝑓-(∑ 𝑤.(𝑗, 𝑘)𝑦! + 𝑏.
%"
!&# ) for 𝑘 = 1,2, . . . , 𝑁-, 

where 𝑦! is the jth hidden neuron value, 𝑂/ is the kth output neuron value, 𝑁- is the number of 

output neurons, 𝑓0 is the output layer activation function, and 𝑤. and 𝑏. are the weight matrix 

and the bias vector connecting the hidden layer to the output layer. The sigmoid activation 

function was also used for 𝑓0. 

The output of the model is the probability that a given subject meets the criteria for CD. 

We adopted the standard classification threshold of .5 to convert probability outputs into binary 

classes of “CD” or “no CD.” As a result, all outputs of probability ≥ .5 were classified as 

meeting for CD diagnosis, and all outputs of probability < .5 were classified as not meeting for 

CD diagnosis (Zou et al., 2016).  
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We trained weight and bias parameters with the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm, an iterative method for solving non-linear optimization problems (Ripley & 

Venables, 2021). The BFGS algorithm randomly assumes initial estimates for the optimal weight 

and bias terms and iteratively adjusts these values until they maximize classification accuracy 

and minimize a specified loss function (Dai, 2002). This approach processes random batches of 

data at a time, providing stability during model training and reliable convergence (Le et al., 

2011).  

As typical with binary classification models, the cross-entropy loss 𝐿12 was used to 

optimize parameters (Mohri et al., 2018). 𝐿12 measures the dissimilarity between the actual class 

y and the predicted class 𝑦7. By selecting weight and bias terms that minimize 𝐿12, the BFGS 

algorithm maximizes the model’s classification accuracy. 𝐿12 is calculated as follows (Jurafsky 

& Martin, 2020): 

𝐿12(𝑦7, 𝑦) 	= 	−𝑙𝑜𝑔(𝑝(𝑦|𝑥)) 	= 	−[𝑦 ∗ 𝑙𝑜𝑔(𝑦)@ + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑦7)] 

The BFGS algorithm conducts backpropagation to calculate the gradient of the loss 

function with respect to weight and bias parameters. Each gradient is computed one layer at a 

time, iterating backward from the last layer to avoid redundant calculations of intermediate 

terms. This method increases the efficiency of model training and updates parameters until 𝐿12 

converges at its minimum (Ciaburro & Venkateswaran, 2017).  

Model Validation 

Machine learning models are advantageous because they minimize overfitting and 

maximize prediction accuracy on unseen observations (Belloni et al., 2014; Dwyer et al., 2018). 

To achieve this, standard validation techniques such as the holdout method set aside around 33% 

of the data for testing the model’s performance (Kim, 2009). Comparisons between in-sample 
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and out-of-sample predictions allow experimenters to check against overfitting and adjust their 

models accordingly; if the classifier demonstrates significantly higher accuracy on seen training 

data compared to unseen test data, there is strong evidence of overfitting. Thus, by maximizing 

test accuracy, experimenters can guard against overfitting and improve generalizability 

(Domingos, 2012; Yarkoni & Westfall, 2017). Consistent with standard model validation 

practices, all predictions and performance measures discussed in the Results section were 

calculated on the out-of-sample testing set.  

Results 

Confusion Matrix 

The confusion matrix evaluates model efficacy by displaying correct and incorrect 

classifications (see Table 4). Confusion matrices for binary classification depict true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN) predictions (Jha et al., 

2017).  

Table 4. Sample Confusion Matrix with Annotations 
 

  Predicted Class 

  
 

True Class 

  Control Patient 

Control TN FP 

Patient FN TP 

 
We compared each classifier’s predictions against the known diagnostic status of subjects 

to construct confusion matrices (see Tables 5-8). For the present study, TP and TN predictions 

refer to subjects with CD that are correctly classified as having CD and typically developing 

subjects that are correctly classified as not having CD respectively. FN predictions incorrectly 
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categorize subjects who have CD as not having CD, and FP predictions incorrectly categorize 

typically developing subjects as having CD.  

Table 5. Confusion Matrix for Model 1 
 

  Predicted Class 

  
 

True Class 

  No CD CD 

No CD 535 226 

CD 269 418 

 
Table 6. Confusion Matrix for Model 2 
 

  Predicted Class 

  
 

True Class 

  No CD CD 

No CD 463 344 

CD 312 422 

 
Table 7. Confusion Matrix for Model 3 
 

  Predicted Class 

  
 

True Class 

  No CD CD 

No CD 642 121 

CD 256 433 
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Table 8. Confusion Matrix for Model 4 
 

  Predicted Class 

  
 

True Class 

  No CD CD 

No CD 607 154 

CD 124 563 

 
Confusion matrices were used to calculate performance measures that normalize the 

number of TP and TN predictions by the model’s sample size, allowing researchers to compare 

classification accuracy across different approaches. 

Performance Measures 

Accuracy is a performance measure that quantifies the overall precision of a classifier. 

This metric describes the proportion of TP and TN predictions among all evaluated cases (Jha et 

al., 2017): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 		
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃	 + 	𝑇𝑁	 + 	𝐹𝑃	 + 	𝐹𝑁 

Sensitivity, or the true positive rate, is the proportion of subjects with CD that are 

correctly classified with the CD label, and specificity, or the true negative rate, is the proportion 

of typically developing subjects that are correctly classified as not having CD. These 

performance measures are calculated with the following formulas (Jha et al., 2017): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 
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The strongest classifiers find an optimal balance between sensitivity and specificity. A 

model with high sensitivity may lack clinical relevance if it demonstrates low specificity and is 

biased towards TP and FP classifications. Conversely, a classifier may yield high specificity at 

the cost of low sensitivity. The receiver operating characteristic (ROC) curve allows researchers 

to assess and optimize this balance by plotting sensitivity against 1 − specificity, also termed the 

false positive rate, at all possible classification thresholds (Mandrekar, 2010).  

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 = 	1 −
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

The coordinate (0,1) in the upper left corner represents a perfect classification with 100% 

sensitivity and specificity. The diagonal line depicts random predictions with 50% sensitivity and 

specificity that fail to meaningfully discriminate between classes. Thus, ROC curves that closely 

approach the left corner represent models that optimize true positive and true negative rates and 

maximize overall accuracy (Mandrekar, 2010). 

The ROC curve for model 4 best approaches the (0,1) point of perfect prediction, 

suggesting that this classifier maximizes sensitivity and specificity. Model 3, model 1, and 

finally model 2 follow model 4 in terms of ROC curve performance. Across the four plots, the 

ROC curve for model 2 more closely mirrors the line of no discrimination, indicating that this 

classifier yields lower overall accuracy (see Figure 6). 
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Figure 6. ROC curves 

 

Note. The ROC curves display the tradeoff between specificity and sensitivity at various classification thresholds. 
The ROC curve for model 4 in figure 6D optimally balances specificity and sensitivity by maximizing true positive 
rates and minimizing false positive rates. Model 4 is followed by model 3 in figure 6C, model 1 in figure 6A, and 
finally model 2 in figure 6B in order of optimal ROC curve performance. 
 

The area under the ROC curve (AUC) is a metric that quantifies the balance between 

sensitivity and specificity and the overall diagnostic accuracy of the model (Mandrekar, 2010). 

The AUC is calculated via standard integration and adopts values between 0 and 1, where 0 

indicates a perfectly inaccurate classifier and 1 reflects a perfectly accurate classifier. An AUC 
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of .5 represents a ROC curve that falls on the diagonal line and displays no discriminatory ability 

(Mandrekar, 2010).  

Model 4 demonstrated the highest accuracy of 80.8%, followed by model 3 (74.04%), 

model 1 (65.81%), and model 2 (57.43%). In other words, model 4 classified the greatest 

proportion of subjects with CD as having CD and typically developing subjects as not having CD 

(see Table 9).  

Model 4 also demonstrated the largest AUC of .8908, followed by model 3 (.8085), 

model 1 (.7471), and model 2 (.6077). These measures suggest that model 4 achieved an optimal 

balance between sensitivity and specificity and maximized overall prediction accuracy (see 

Table 9). 

Finally, model 4 yielded the highest sensitivity of 81.95%, while model 3 demonstrated 

the highest specificity of 84.14%. These findings indicate that model 4 is the best classifier for 

detecting CD among subjects with CD, and model 3 is the best classifier for determining the 

absence of CD among typically developing subjects. Following model 3, model 1 produced a 

relatively high specificity rate of 70.3% but a lower sensitivity rate of 60.84%. In contrast, model 

2 displayed the lowest sensitivity and specificity rates of 57.49% and 57.37% respectively (see 

Table 9).  
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Table 9. Performance Measures 
 

Model Accuracy Sensitivity Specificity AUC 

Model 1 65.81% 60.84% 70.3% 0.7471 

Model 2 57.43% 57.49% 57.37% 0.6077 

Model 3 74.04% 84.14% 74.04% 0.8085 

Model 4 80.8% 81.95% 79.76% 0.8908 

 
Feature Importance 
 

Feature importance describes the risk factors most influential in a classifier’s decision-

making process. Garson’s algorithm in R identifies the relative importance of explanatory 

variables on the classification task by deconstructing and assessing weighted connections 

associated with each predictor (Garson, 1991). This technique displays both the sign and 

magnitude of the feature’s influence on CD diagnosis.  

In model 1, family members throwing items, fighting, and hitting each other are the 

environmental risk factors with the greatest feature importance. These predictors are positively 

associated with CD diagnosis. Male sex also predicts CD within this model (see Figure 7).  
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Figure 7. Feature Importance for Model 1 
 

 
Note. Features are ordered from left to right by increasing absolute value of importance. Row A represents all 
features included in model 1. Row B highlights the five most important features in model 1.  
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The graph metrics with the greatest feature importance in model 2 are subcortical 

clustering, subcortical degree, and global clustering. Subcortical clustering and global clustering 

are positively associated with CD, suggesting that affected youth may experience greater 

functional segregation. In contrast, subcortical degree is negatively correlated with diagnosis, 

indicating that reduced cortical-subcortical connections characterize CD (see Figure 8).  
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Figure 8. Feature Importance for Model 2 

 
Note. Features are ordered from left to right by increasing absolute value of importance. Row A represents all 
features included in model 2. Row B highlights the five most important features in model 2.  
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In model 3, the severity of ADHD and ODD symptomatology strongly predicts CD 

among subjects (see Figure 9). 

Figure 9. Feature Importance for Model 3 

 
Note. Features are ordered from left to right by increasing absolute value of importance.  

 
Finally, in model 4, the most important features for CD classification are comorbid 

ADHD and ODD symptoms, physical abuse, family criticism, and subcortical degree. Greater 

ADHD and ODD symptomatology, family violence, and family criticism all predict the disorder. 

In contrast, the number of cortical-subcortical connections is negatively correlated with CD (see 

Figure 10). 
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Figure 10. Feature Importance for Model 4 

 
Note. Features are ordered from left to right by increasing absolute value of importance. Row A represents all 
features included in model 4. Row B highlights the five most important features in model 4.  
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Sensitivity Analysis 

Sensitivity analysis allows researchers to visualize the linear and non-linear relationships 

between the classification task and predictors in the presence and absence of other predictors 

(Zhang et al., 2018a). We used Lek’s profile method in R to conduct sensitivity analysis and 

illustrate how the probability of CD diagnosis and individual risk factors covary while holding 

other factors constant (specifically at their minimum, maximum, and 20th, 40th, 60th, and 80th 

quartiles).  

We focused our sensitivity analysis on model 4 given its high accuracy rate and 

biopsychosocial assessment. When all other predictors are held at intermediate levels, higher 

values of ODD and ADHD symptom severity, family fighting, and family criticism and lower 

values of subcortical degree predict CD (see Figure 11). These relationships are consistent with 

the strongly positive feature importance of comorbid ADHD and ODD symptomatology, 

physical abuse, and criticism and negative feature importance of cortical-subcortical connectivity 

reported in model 4. 
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Figure 11. Sensitivity Plots 

 
Note. The sensitivity plots in figures 11A-E display the relationship between model 4 predictions and the risk factors 
of ODD symptoms, ADHD symptoms, family fighting, family criticism, and subcortical degree respectively. The 
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explanatory variable denotes risk factor values, and the response variable denotes the probability that a subject is 
diagnosed with CD. The risk factors in figures 11A-D positively correlate with the likelihood of developing CD, 
while the risk factor in figure 11E negatively correlates with the likelihood of developing CD. 
 

Discussion 

The present study is the first to utilize different subsets of biopsychosocial risk factors to 

predict CD diagnoses among youth. Comparing accuracy rates across the various classifiers, we 

demonstrate that a multifactorial biopsychosocial model for CD yields greater predictive 

accuracy than domain-specific collections of risk factors. Furthermore, we identify comorbid 

ADHD and ODD symptoms, physical hitting, family criticism, and reduced cortical-subcortical 

connectivity as the “riskiest” factors for CD. 

Reaffirming the Biopsychosocial Model 

 Our findings suggest that a biopsychosocial model is superior to neural, psychological, or 

environmental predictors alone in explaining and predicting CD onset. Model 4, built on all 36 

biopsychosocial risk factors, reports the highest accuracy and AUC among the classifiers, 

supporting the cross-domain theory for CD development. Furthermore, the five most important 

features for CD classification in model 4 were the psychological risk factors of ADHD and ODD 

symptomatology, the environmental risk factors of physical hitting and family criticism, and the 

neural risk factor of subcortical degree. The involvement of all three domains in achieving 

accurate classification further reinforces the biopsychosocial model. 

The high feature importance of ADHD and ODD symptomology in model 4 indicates 

that hyperactive and impulsive behaviors, hostility, and defiance against authority figures 

strongly predict CD diagnosis among youth (Turgay, 2005). In fact, the absolute value of feature 

importance for ODD symptoms (23.31) and ADHD symptoms (21.60) is almost twice that for 

subcortical degree (12.93). Considering that subcortical degree is the fifth most important factor 
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in model 4, this comparison suggests that the predictive power of ADHD and ODD is 

substantial. Furthermore, prior research identifies greater delinquency, aggression, and symptom 

severity as well as different treatment responses among subjects with comorbid CD + ADHD and 

CD + ODD compared to subjects with these disorders in isolation (Connor & Doerfler, 2008; 

Jensen et al., 2001). Given these associations, the present study demonstrates that ADHD and 

ODD comorbidity may indicate particularly high-risk subsets of youth in addition to strongly 

predicting CD. The high influence of ADHD and ODD also implies that these disorders share 

underlying risk factors or latent characteristics with CD (Biederman et al., 1991). Indeed, the 

association between ODD and CD is consistent with the common themes of rule-breaking and 

aggression that define their diagnoses (Loeber et al., 2000). Furthermore, the prediction of CD 

status based on ADHD symptomatology supports the hybrid theory for comorbid CD and ADHD 

development. Under the hybrid model, even if the risk profiles for CD and ADHD are somewhat 

distinct (e.g., CD is associated with psychosocial adversity and ADHD with developmental 

delays and neurocognitive deficits), the presence of risk factors for one disorder increases the 

likelihood of risk factors for the other (Schachar & Tannock, 1995). These findings propose that 

mutually influential etiological pathways may connect CD and ADHD.  

The ranking of physical hitting and family criticism as the third and fourth most 

influential predictors in model 4 demonstrates the robust relationship between negative 

parenting, home dysfunction, and adverse child development. These results support extensive 

findings that physical abuse from caretakers greatly increases the risk for CD (Dodge & Pettit, 

2003). Furthermore, the salience of the family criticism predictor is consistent with the theory 

that coercive parenting styles aggravate antisocial youth outcomes (McFadyen‐Ketchum et al., 

1996; Patterson, 1995). Under the coercion model, a parent harshly scolds or punishes their child 
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for misbehavior, the child reacts by screaming or rebelling, and the parent adopts a positive or 

neutral response to quell the child’s aversive conduct. According to Patterson (1995), this 

coercive parenting style negatively reinforces disruptive and aggressive behavior and is a crucial 

life experience risk factor for later conduct problems. The present study suggests that family 

criticism may play a key role in promoting this coercive exchange between parent and child.  

Although prior studies find strong correlations between community violence, social 

disorganization, and CD, the neighborhood crime feature yields only moderate predictive power 

(Loeber et al., 2000). A comparison across social risk factors reveals that physical hitting (14.51) 

and family criticism (13.47) demonstrate substantially higher absolute importance than 

neighborhood crime (4.76) when assessing for CD in model 4. Furthermore, as the 17th most 

predictive factor among 36 factors, neighborhood crime ranks below the median feature 

importance value. This midtier ranking initially implies that neighborhood crime only 

moderately influences the classification task and is less predictive of CD than physically and 

verbally harmful interactions between parent and child. However, given that the neighborhood 

crime predictor reflects parental assessments of both violent and non-violent crime, these results 

are not necessarily inconsistent with widespread findings that social disorder is a crucial risk 

factor for CD. First, parental reports of neighborhood crime may differ substantially from 

children’s perceptions and may fail to measure social disorganization as experienced by affected 

youth. Second, since crime is only one aspect of the neighborhood environment, other 

unmeasured components such as community economic disadvantage, neighborhood violence, 

and involvement with neighborhood-based deviant peers may more directly define the social 

context and predict CD (Ingoldsby & Shaw, 2002). Consequently, further research is needed to 
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explore the relationship between CD and different aspects of social disorganization as reported 

by youth to re-assess the relative importance of neighborhood and family risk factors. 

Finally, the negative association between subcortical degree and CD suggests that 

reduced connectivity between subcortical and cortical regions places youth at significant risk for 

diagnosis. This finding is consistent with well-established theories positing that reduced 

connectivity and communication between subcortical structures, such as the amygdala, 

hippocampus, and caudate, and the rest of the brain significantly hinder crucial neurocognitive 

processes (e.g., affective responding, memory, reward and punishment processing, decision-

making, and violence inhibition; Baas et al., 2004; Blair, 1995; Eichenbaum, 2001; Knutson & 

Cooper, 2005; Tillem et al., 2019). Disrupted cortical-subcortical communication poses 

particularly insidious implications for youth with CD, who may express aggressive or impulsive 

behaviors even at the cost of others’ physical and emotional wellbeing because affective 

processing and self-inhibitory mechanisms are disrupted. Interestingly, subcortical degree 

(12.93) demonstrates substantially higher absolute importance than global clustering (4.60). 

Although both graph metrics are relevant to the classification task, decreased cortical-subcortical 

connectivity is more predictive of CD than abnormalities in global clustering and other measures 

of functional segregation. Thus, reduced communication between subcortical structures, such as 

the amygdala, and cortical structures, such as the prefrontal cortex, appears especially relevant 

for the etiopathogenesis of CD and its related symptomatology.  

The positive feature importance of global clustering for CD classification is initially 

surprising given that higher clustering coefficients are associated with optimal network 

organization and functioning (Achard et al., 2006). For example, the “small-world” network 

structure—a specific topology hypothesized to enhance robust and effective information 
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processing—is characterized by both high global clustering and high global efficiency (Liao et 

al., 2017). However, the greater feature importance of global clustering (4.60) relative to global 

efficiency (1.05) in the present student reinforces a recent hypothesis that heightened clustering 

without a corresponding increase in efficiency impairs general neurocognitive functioning for 

subjects with CD (Tillem et al., 2021). Higher clustering relative to efficiency may increase 

functional segregation to such a degree that it inhibits flexible communication and information 

integration between more distal nodes or networks (Tillem et al., 2021). The present study is 

consistent with this suggestion, and these collective findings demonstrate the relevance of further 

investigation into aberrant brain topology among youth with CD.  

The risk factors for CD cut across various domains and levels of analysis. Youth with the 

greatest likelihood of developing CD face extensive physical and verbal conflict in the home and 

demonstrate hyperactivity, impulsivity, and hostility towards authority figures. At the neural 

level, these youth also experience abnormalities in cortical-subcortical connections that may 

interfere with emotional regulation and self-inhibitory mechanisms. Thus, current findings 

suggest that researchers should continue investigating the psychological well-being, family 

environment, and neural topography of at-risk youth to adequately understand, detect, and treat 

CD. 

Domain-Specific Models 

A comparison across domain-specific classifiers demonstrates that model 3—built on risk 

factors of psychological comorbidity alone—outperforms models 1 and 2. This result is 

consistent with the high feature importance of ADHD and ODD reported in model 4 and 

suggests that, in isolation, ADHD and ODD symptom severity is more predictive of CD than 

disruptions in brain topology or neighborhood and family-level risk factors.  
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Model 1 performed the next best among the classifiers built on domain-specific risk 

factors. Its accuracy rate of 65.81% demonstrates that neighborhood and family features are 

moderately predictive of CD on their own. This finding is slightly surprising given widespread 

suggestions that neighborhood crime, physical discipline, lack of parental supervision, and 

coercive parenting styles are the most consistent risk factors for later conduct problems (Dishion 

& Bullock, 2002; Dodge & Pettit, 2003; Lansford et al., 2002; Patterson, 1995). Nonetheless, the 

performance of model 1 indicates that environmental features are decent predictors of CD on 

their own and achieve even greater accuracy when assessed alongside psychological and 

biological risk factors. Furthermore, because the predictors in model 1 primarily measure child-

parent interactions within the home, the inclusion of additional features such as exposure to 

community violence, antisocial peer influences, and the school environment may better represent 

social risk factors for CD and improve classification. 

With a prediction accuracy of 57.43%, model 2 performed worse than not only the 

models in the present study but also the classifier developed by Zhang et al. (2020b). Yielding up 

to 94.44% accuracy, Zhang et al.’s (2020b) model separated subjects with CD from healthy 

controls based on 232 network property indices (e.g., clustering coefficient, average path length, 

average node degree, and measures of small-worldness) between highly correlated nodes within 

the brain. Because Zhang et al. (2020b) did not report the features most influential in their 

predictions, it is difficult to compare the neural profiles of CD classification observed in their 

study against our own. However, this discrepancy in performance accuracy indicates that indices 

between many node combinations, as performed in Zhang et al. (2020b), may offer more 

predictive power than indices between 13 cortical nodes and one subcortical node, as performed 

in the present study. This interpretation suggests that researchers may more precisely articulate 
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the neural abnormalities that define CD by extracting graph metrics across a greater number of 

nodes.  

Limitations 

 The current study provides strong evidence that youth with CD face notable biological, 

psychological, and social risk exposures. However, these findings must be considered in light of 

several key limitations. First, feature importance quantifies the relative influence of predictors on 

CD classification based on other predictors in the model and cannot measure their absolute 

influence. Furthermore, the training of each classifier incorporates inherent variation as samples 

are randomly separated into training and testing sets and model parameters are randomly 

initialized before their optimization. As a result, performance measures and feature importance 

scores may vary slightly for each training of the same model. This quality of feature importance 

suggests that researchers should build numerous, diverse models on many combinations of risk 

factors to identify the features that consistently yield strong predictions. 

 Additionally, the present study does not evaluate interactions between risk factors during 

classification nor does it assess if risk factors mediate the relationship between neurocognitive 

difficulties, emotional dysfunction, antisocial conduct, or other behavioral outcomes that 

characterize CD. These two analyses may greatly benefit researchers by determining how unique 

combinations of key risk factors yield additive or diminishing effects on CD onset and 

differentially account for its heterogeneous behavioral expressions.  

Conclusions and Future Directions 

Machine learning classifiers are powerful tools for psychologists to determine salient risk 

factors, identify clinically relevant subgroups, and predict diagnoses and other psychiatric 

outcomes. These methods are especially relevant for CD research because they examine the 
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collective influence of high-dimensional biopsychosocial factors spanning the neighborhood, 

home, and child. Identifying comorbid ADHD and ODD symptoms, verbal and physical conflict, 

and reduced cortical-subcortical connectivity as highly predictive risk factors for CD, we 

demonstrate the potential for classifiers to test etiological theories. Future research should build 

upon the present study and also advance predictive modeling methods to determine if identified 

biopsychosocial factors meaningfully improve clinical outcomes for youth with CD. Specifically, 

the classification of high-risk youth before disorder onset may enhance prevention and early 

intervention strategies. Researchers can build classifiers that separate subjects into low, 

moderate, and high-risk groups or report a continuous risk score for CD development using 

biopsychosocial risk exposures at a baseline assessment. A comparison of these predictions 

against CD onset or symptom severity at later time points may illuminate the extent to which 

classifiers reliably can predict psychological outcomes before they occur. In the future, these 

longitudinal classification models may help establish machine-assisted risk detection processes 

that identify high-risk subjects prior to CD development. 

 Furthermore, predictive models may improve etiological theories and psychiatric 

treatment by assessing the childhood-onset and adolescent-onset subtypes of CD. According to 

Moffitt et al. (1996), youth diagnosed with CD during adolescence temporarily engage in 

aggressive behavior to meet survival needs, adhere to antisocial peer or gang influences, or 

explore typical rebellious tendencies. In contrast, youth who develop CD during childhood 

experience more severe, long-term genetic and neurocognitive deficits. This theory proposes two 

distinct profiles for youth with CD: (a) an adolescence-onset subgroup whose antisocial behavior 

only occurs during adolescence and (b) a childhood-onset or life-course-persistent subgroup 

whose antisocial behavior emerges early in childhood and persists into adulthood. Future work in 
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clinical psychology and machine learning can test Moffitt et al.’s (1996) hypothesis by assessing 

how classifiers built on various combinations of risk factors differentially predict outcomes in 

the childhood-onset or adolescent-onset groups. In doing so, researchers may develop nuanced 

profiles for these subgroups that promote targeted and effective interventions for youth with CD. 

 In addition, machine learning is especially suited for assessing massively multivariate 

data and engaging in image pattern recognition. As a result, classifiers can further explore the 

neural abnormalities introduced in the present study by analyzing highly information-rich neural 

data such as graph metrics between numerous node pairings or raw images of brain connectivity. 

These investigations may identify salient biological risk factors in addition to disrupted cortical-

subcortical connectivity and clarify the unique neural profile for CD.   

Given the immense burden of antisocial behavior on individuals, their families, and 

society at large, research on CD is crucial. Machine learning techniques that assess high-

dimensional biopsychosocial variables, extract patterns from complex neural data, and robustly 

predict psychological outcomes are especially promising. Thus, the application of the 

biopsychosocial model and classification method to CD research may help alleviate burdens on 

the mental health and criminal justice system and improve outcomes for affected youth by 

refining etiological models and treatment.  
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